

Fatigue Management Seminar

FAR 117 Fitness for Duty and Responsibilities January 22–23, 2020 McLean, Va.

Fatigue – What is it?

Amanda Lamp, PhD

Sleep and Performance Research Center
Department of Medical Education and Clinical Sciences
Elson S Floyd College of Medicine
Washington State University – Spokane, Washington USA

Disclosure Information

I have the following financial relationships to disclose:

- Scientific Consultant for: United Airlines
- Grant/Research support from: United Airlines
- Employee of: Washington State University

I will not discuss off-label use and/or investigational use in my presentation, nor any specific data related to any funding sources.

FATIGUE DEFINED

- Physiological state of decreased ability to maintain optimal mental and/or physical function (Brown, 1994; Petrilli et al., 2006)
- Results from the interacting effects of time awake, time of day, and time on task (Belenky et al., 2014; Brown, 1994; Petrilli et al., 2006)
- Trait-like individual differences in response to all three factors (Philip et al., 2006; Van Dongen, Vitellaro, & Dinges, 2005; Williamson et al., 2011)
- Fatigue cannot be overcome through effort, motivation, or training
- Not possible to reliably self-assess fatigue levels and consequent performance impairment

WHAT IMPACTS FATIGUE

Time Awake

Sleep

AASM (Watson et al., 2015) and NSF (Hirshkowitz et al., 2015) concluded that 7-9 hours of sleep per night will sustain cognitive performance, health, and well-being relatively indefinitely

Wakefulness

The longer the continuous hours of wakefulness, the greater the degradation in performance and increase in fatigue and sleepiness that can only be alleviated fully with sleep

WHAT IMPACTS FATIGUE (CONT.)

Time of Day

Circadian Rhythm

- An approximately 24-hour sinusoidal rhythm that acts as a biological clock located in the brain, specifically the SCN (Belenky, Wu, & Jackson, 2011)
- SCN acts as a blue light detector, modulating the circadian rhythm by the light/dark cycle

Circadian Desynchrony (Jet Lag)

- Misalignment of the circadian rhythm within an externally imposed change in the 24-hour day
- Occurs when crossing multiple time zones (Graeber, 1988; Petrilli et al., 2006)
- Associated with sleep disruption, degraded performance, increased number of health complaints, and decreased feelings of well-being (Graeber, 1988; Petrie & Dawson, 1997; Petrilli et al., 2006)

WHAT IMPACTS FATIGUE (CONT.)

Time on Task

Workload

- Workload directly affects fatigue, which directly affects performance
- As workload increases, fatigue increases, leading to reduction in performance
- Little data quantifying workload and its interaction with time of day & time awake
- Biomathematical 2-process models do not include workload
- NASA Task Load Index (TLX) (Rubio et al., 2004) Best workload metric for predicting performance

WHAT IMPACTS FATIGUE (CONT.)

Other Factors

Interindividual Variability

- Genetic makeup
- Morningness/eveningness

Undiagnosed sleep disorders

- OSA
- Insomnia

Alertness Aids

Caffeine

Sleep Aids

Melatonin

FATIGUE AND PERFORMANCE

- Fatigue directly affects performance such that as fatigue increases, there is a reduction in performance (Fan et al., 2017)
- Currently scientists do not know how quickly individuals recover from cumulative fatigue and performance degradation
- We do know performance recovery does not occur by:
 - 2nd recovery day when allowed 10 hrs time in bed (TIB) (Redwine et al, 2000)
 - 3rd recovery day when allowed 8 (Belenky et al., 2003; Banks, 2007) & 16 hrs TIB (Klerman & Dijk, 2005)
 - 5th recovery day when allowed 8 hrs TIB (Rupp et al., 2009)
- Performance does return to baseline levels after 7 recovery days when allowed 8 hrs TIB (Axelsson et al., 2008)

FATIGUE SYMPTOMS IN AVIATION

- Impaired decision-making capabilities
- Impaired mental flexibility
- Perseverating on a factor that is not useful in light of new information
- Lack of ability to communicate effectively
- Attentional lapses and slowed response time
- Lack of focus on factors that matter
- Poor memory
- Poor appreciation of useful alternative options
- Decisions influenced by emotion instead of strictly logic

(Caldwell, 2005; Harrison & Horne, 2000; Horne, 2012; Petrie & Dawson, 1997)

Contact Information

Dr. Amanda Lamp, PhD

Occupational Sleep Medicine Group Sleep and Performance Research Center Department of Medical Education and Clinical Sciences

Elson S. Floyd College of Medicine
Washington State University – Spokane
alamp@wsu.edu

REFERENCES

- Axelsson, J., Kecklund, G., Åkerstedt, T., Donofrio, P., Lekander, M., & Ingre, M. (2008). Sleepiness and performance in response to repeated sleep restriction and subsequent recovery during semi-laboratory conditions. Chronobiology international, 25(2-3), 297-308.
- Banks, S. (2007). Behavioral and physiological consequences of sleep restriction. Journal of clinical sleep medicine, 3(05), 519-528.
- Belenky, G., Lamp, A., Hemp, A., & Zaslona, J. L. (2014). Fatigue in the workplace. In Sleep Deprivation and Disease (pp. 152-160). Springer, New York, NY.
- Belenky, G., Wesensten, N. J., Thorne, D. R., Thomas, M. L., Sing, H. C., Redmond, D. P., & Balkin, T. J. (2003). Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. Journal of sleep research, 12(1), 1-12.
- Belenky, G., Wu, L. J., & Jackson, M. L. (2011). Occupational sleep medicine: practice and promise. Prog Brain Res, 190, 189-203.
- Brown, I. D. (1994). Driver fatigue. Human factors, 36(2), 298-314.
- Caldwell, J. A. (2005). Fatigue in aviation. *Travel Medicine and Infectious Disease, 3*(2), 85-96.
- Cohen, D. A., Wang, W., Wyatt, J. K., Kronauer, R. E., Dijk, D. J., Czeisler, C. A., & Klerman, E. B. (2010). Uncovering residual effects of chronic sleep loss on human performance. Science translational medicine, 2(14), 14ra3-14ra3.
- Fan, J., & Smith, A. P. (2017, June). The impact of workload and fatigue on performance. In International Symposium on Human Mental Workload: Models and Applications (pp. 90-105). Springer, Cham.
- Graeber, R. C. (1988). Aircrew fatigue and circadian rhythmicity Human factors in aviation,305-344. Fatigue Management Seminar San Diego, CA: Academic Press, Inc.

REFERENCES

- Harrison, Y., & Horne, J. A. (2000). The impact of sleep deprivation on decision making: a review. *Journal of experimental psychology: Applied, 6*(3), 236-249.
- Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O., DonCarlos, L., . . . Kheirandish-Gozal, L. (2015). National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health, 1(1), 40-43.
- Horne, J. (2012). Working throughout the night: Beyond 'sleepiness'-impairments to critical decision making.
 Neuroscience & Biobehavioral Reviews, 36(10), 2226-2231. https://doi.org/10.1016/j.neubiorev.2012.08.005
- Kitamura, S., Katayose, Y., Nakazaki, K., Motomura, Y., Oba, K., Katsunuma, R., ... & Mishima, K. (2016). Estimating individual optimal sleep duration and potential sleep debt. Scientific reports, 6, 35812.
- Klerman, E. B., & Dijk, D. J. (2005). Interindividual variation in sleep duration and its association with sleep debt in young adults. Sleep, 28(10), 1253–1259. doi:10.1093/sleep/28.10.1253
- Petrie, K. J., & Dawson, A. G. (1997). Symptoms of fatigue and coping strategies in international pilots. The International Journal of Aviation Psychology, 7(3), 251-258. https://doi.org/10.1207/s15327108ijap0703_5
- Petrilli, R. M., Roach, G. D., Dawson, D., & Lamond, N. (2006). The sleep, subjective fatigue, and sustained attention of commercial airline pilots during an international pattern. Chronobiology international, 23(6), 1357-1362. doi: 10.1080/07420520601085925
- Philip, P., Taillard, J., Moore, N., Delord, S., Valtat, C., Sagaspe, P., & Bioulac, B. (2006). The Effects of Coffee and Napping on Nighttime Highway Driving, A Randomized Trial. *Annals of internal medicine*, 144(11), 785-791. doi:0.7326/0003-4819-144-11-200606060-00004

REFERENCES

- Redwine, L., Hauger, R. L., Gillin, J. C., & Irwin, M. (2000). Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. The Journal of Clinical Endocrinology & Metabolism, 85(10), 3597-3603.
- Rubio, S; Diaz, E; Martin, J; Puente, JM (January 2004). "Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods". Applied Psychology. 53 (1): 61–86. doi:10.1111/j.1464-0597.2004.00161.x
- Rupp, T. L., Wesensten, N. J., & Balkin, T. J. (2012). Trait-like vulnerability to total and partial sleep loss. Sleep, 35(8), 1163-1172.
- St Hilaire, M. A., Rüger, M., Fratelli, F., Hull, J. T., Phillips, A. J., & Lockley, S. W. (2017). Modeling neurocognitive decline and recovery during repeated cycles of extended sleep and chronic sleep deficiency. Sleep, 40(1).
- Van Dongen, H. P. A., Price, N. J., Mullington, J. M., Szuba, M. P., Kapoor, S. C., & Dinges, D. F. (2001). Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep, 24(7), 813-819. https://doi.org/10.1093/sleep/24.7.813
- Van Dongen, H. P. A., Vitellaro, K. M., & Dinges, D. F. (2005). Individual differences in adult human sleep and wakefulness: Leitmotif for a research agenda. Sleep, 28(4), 479-498. https://doi.org/10.1093/sleep/28.4.479
- Watson, N. F., Badr, M. S., Belenky, G., Bliwise, D. L., Buxton, O. M., Buysse, D., . . . Grandner, M. A. (2015). Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. Journal of clinical sleep medicine, 11(8), 931-952. doi: 10.5664/jcsm.4950
- Williamson, A., Lombardi, D. A., Folkard, S., Stutts, J., Courtney, T. K., & Connor, J. L. (2011). The link between fatigue and safety. Accident Analysis & Prevention, 43(2), 498-515. https://doi.org/10.1016/j.aap.2009.11.011 **Fatique Management Seminar**

OSA and Insomnia

OSA can be diagnosed at home with many pilots now using C-PAP or an oral appliance successfully, seeing immediately health benefits while retaining their jobs

OSA

- Due to respiratory impairment through blockage of airflow in the upper airway and collapse of airways that disturbs breathing during sleep and increased blood CO₂ levels (Belenky et al., 2011; Venner et al., 2019)
- Keeps an individual from obtaining high quality sleep (Balkin, Horrey, Graeber, Czeisler, & Dinges, 2011; George, 2007)
- Manifests in fragmented, non-recuperative sleep, causing excessive daytime fatigue/ sleepiness/performance impairment (Adams, Strauss, Schluchter, & Redline, 2001; Belenky et al., 2011)
- Population at highest risk: overweight males at increased age

Insomnia

- Characterized by problems falling or staying asleep (early awakenings)
- Leads to:
 - 1) shorter sleep duration often causing prolonged sleep restriction
 - 2) fragmented (non-recuperative)/poor quality sleep
- Manifests in excessive daytime fatigue, sleepiness, and performance impairment FAR 117 Fitness for Duty and Responsibilities

Fatigue Management Seminar